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ABSTRACT

A Monte .aa lo investigation of six r.-7,:-L.st =relation

estimators was conducteL for data from disci. _:ions with

longer than Gaussian tails: a bisquare coeffic'.i.ent, the

Tukey correlation, the s=andardized sums and differences, a

biweight standardized sums and differences, the transformed

Spearman's rho and a bivariate trimmed Pearson. Evaluation

of the estimators was based on bias and variability as

measured by mean square error, and efficiency relative to

the Pearson correlation coefficient. Correlations of

.3, .6, and .0 for samples of size twenty and forty for

different weight tails were used.
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INTRO.:2=0N

'.7.1g the rrias' twa decades:; researchers have been

investal=ing tae -valleity and efficiency of least squares

estima=rs when the as774umption of a Gaussian distribution is

violas ,==1 and have clearly demmmstrated..the inadequacy of

such .estimators, including tae Pearson product-moment

correlation coefficient, for distributions with longer than

Gaussian tails. IL _,era of estimators, called resistant

and robust, has been pr=mosed to eimate parameters of long

tailed distributionc, 197':; Hogg, 1967; Huber,

1972; Wainer, 1970. distinction between resistance and

robustness is not always' =dear in the literature and the

term robust is often csed to describe both properties.

Resistance refers to the ability of a summary statistic to

remain constant in view of a change in a small part of the

data, no matter what part or how substantial the change.

The term robustness does not have singular meaning and in

the context of this paper refers to the variability of the

estimator.

The resistant and robust estimation of parameters

involves the transformation of the observations to some

other values such as ranks and/or the differential treatment

of the observations such as the trimming of extreme

observations or the weighting of all observations by some

scheme. Resistant and robust location and regression

estimators have been studied extensively (Andrews, Bickel,
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Hampel, Huber, Rogers and Tukey, 1972; Andrews, 1974;

Gross, 1976, 1977; Huber, 1977; Maronna, 1976; Ramsay,

1977), but the investigation of such correlation estimators

is limited (Denby and Larson, 1977; Devlin, Gnanadesikan

and Kettenring, 1975; Gnanadesikan and Kettenring, 1972;

Wainer and Thissen, 1976). Unlike the least squares

solution, there is not a unique relationship between

correlation and regression for most robust and resistant

estimators. The literatures are therefore separate and

distinct.

The criteria for the treatment of observations for the

estimation of the correlation coefficient must take into

account the position/value of an observation within the

respective univate distributions as well as the bivariate

distribution. While no one estimator has demonstrated

overall superiority, the more promising correlation

estimators involve trimming in the univariate context of the

X and Y distributions and the bivariate context of the major

and minor axes.

This study compares six of the more promising robust

correlation estimators. Mean square error and efficiency

relative to the Pearson are used to evaluate the estimators.



2. ROBUST CORRELATION ESTIMATION

One of the first papers to give an overview of .1_!.

problems of multivariate estimation is Gnanadesikan

Kettenring (1972) . They base the estimation of correlatiom

on the quarter square identity

cov(X,Y) = 1/4 Ivar(X f Y) var(X - 2.1

and using the usual standard deviations s(X) and s(Y) obtain

the Pearson correlation coefficient,

r(P) = cov(X,Y)/s(X) s(Y). 2.2

Standardized Sums and Differences - r*(SSP)

Robust correlation estimators cam be obtained by using

any robust estimators of scale to calculate estimates of the

vaiances and standard deviations and using them in

equations 2.1 and 2.2-.

A problem with this procedure is that the robust

correlation estimates may not lie within the bounds [-1,

+1]. The so:1ution is to, standardize the univariate

distributions first, using robust estimators of location and

scale, t* and s*, respectively. Let

x = (X-t*(X))/s*(x) and y = (Y-t* (pY))/s*(Y). 2.3

The resulting robust estimator is called the standardized

sums and differences, r*(SSD),
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2 2 2 2

r* "SSD) :Ts*(x+y) -s* (x-y) ) / (s*(r÷y) +sm.- ) 2.4

Any robust location and scale estimators =an be used

ut the ostim...-te-rt most often used are triaririlmi

= rimmed Ma3/1s and variances. (In this paper, =Laming

percentaae. refers to the total trimmed, ione f of the

percent f:-._om each end of the distribution.) This est+7r1tor

performeZ well in studies by Devlin, et al. al-=..vf Denby and

Larson.-

This approach looks first at the univariate

distrihrtons independently and then the major (x+y) and

minor (.7:-.-) axes of the bivariate space. It i important to

note tzat an observation which is considered a univariate

outlier might not be considered a bivariate outlier when we

examine the scatter plot of the data and visa versa.

Biweight Standardized Sums and Differences - r*(BSD)

In a study of confidence interval robustness for tbe

correlation coefficient, Chou (1980) developed a biweight

measure of correlation having the form of the standardized

sums and differences (2.4) but used the biweight location

and bar statistics (hosteller and Tukey, 1977) as the

estimators of location and scale. This estimator will be

denoted as r*(BSD). In the Chou study it demonstrated

robustness in several situations but its properties as a

point estimator are unknown.
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The biweight statistic is an iterative amimum

likelihcou estimator of= location. Let

w

t* = >w m / > w 2.5
ik I ik

2 2 2

- 1.1 ) if u < 1

2
0 if u > 1

u = (X - t* )

i i k-1 k-1

2.6

2.7

d k refers to the ktb iteration, c is some constant and s*

is a measure of scale.

In this study, c = 9 and the median of the absolute

deviations (FAD) vas used as the measure of scale.

The corresponding measure of scale is called "bar" for

robust variance.

bar(X) -

2 2 4
a 50 (X -t *) (1-u )

2 2 2 2

[5. (1-u ) (1-5u ) ](-1+31 (1-u ) (1-5u ) ]

2

2. 8

where >1 means to sum only those observations where u < 1.

8
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TukeE Correlation - r*(t)

The Tukey correlation is also base& an the quarter

square identity where s* is an unbiaseB -3stimator of the

standard deviation and a robust measure o scale obtained

from the order statistics of the observatiIrs. Let

then

where

= Vs* (x) and y" = Y/s*II) 2.9

2 2
r* (t) = 1/4 [ (s* (x" + y")) - (s* (z4 - y")) 3, 1.10

= [ 1.77245/ (n (n-1) ) 3 > d (i) (i) 2.11

For a sample of size n, the subscript i represents the rank

of the observations in ascending order and g(i) represents

the distance between two adjacent observations; i.e.,

and

g (i) = X (i + 1) - X (i) for i = 1,...,n-1 2.12

d (i) = i (n i) . 2.13

The Wainer and Thissen study was inconclusive as to the

value of r*(t) and Chou (1979) has shown it to perform well

in some situations.

9
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Trans) Spearman's Rho r*(S)

The trar.formed Spearman's rho

r*cS) -= 2 sin (3.14159/6) r(S) 2.14

is viewed as having robust properties and was included in

the tudy of robust correlation estimation by Wainer and

Thissen with mixed results. The ease of calculation and

familiarity make it an attractive estimator to use.

Bivariate Trimming - r*(BVT)

Bivariate trimming refers to a general class of robust

estimators which trim a specified percent of observations on

the major and minor axes. Once a given percent of the

sample observations are identified as outliers, they are

trimmed and the usual Pearson calculated from the reduced

sample. The procedures for identifying the outliers differ.

Devlin et al. used an iterative approach and Chou (1979)

used the least squares estimates of location and scale to

standardize the univariate distributions and then obtained

the crossproducts. The largest positive and negative

crossproducts were then trimmed.

In this study 10% symmetrically trimmed means and

variances were used for standardizing with 20% symmetric

trimming of the crossproducts.

10
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Bisquare Coefficient - r *(B')

The bisquare correlation coefficient was introduced by

Hosteller and Tukey

2 1/2
r* (B) = + 1 / [1 + bar(Y-bX) / b bar(X)] 2.15

with the sign of b, where b is the slope of a bisquare

regression fit. The bisquare regression fit results from an

iterative weighted least squares algorithm with the weights

determined by the relative magnitude of the residuals.

Baranowski (1980) investigated several aspects of this

estimator including problems with respect to the preliminary

bisquare regression fit. A problem of this estimator is the

lack of stability of the estimate given the transposition of

X and Y. The use of the least squares start and a constant

of 9 was the prefered solution for the regression fit. To

solve the problem of transposition, Baranowski proposed an

averaged bisquare, r*(131), obtained by fitting both

regreision lines, calculating both correlation estimates and

taking the average. This averaged bisquare estimate was

.more efficient than the single bisquare in all situations.

1-i
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3. DATA and DESIGN

Long tailed distributions were simulated by the

generation of contaminated bivariate normal distributions.

(This is one of several approaches used in other research

and is not intended to imply that this is how long tailed

distributions occur in real situations.) Given a bivariate

standard normal distribution with a specified correlation,

observations were replaced with probability beta with

observations from a bivariate normal distribution with mean

equal to zero and variance greater than one. The

correlation in the bivariate standard normal and the

contaminating normal distributions were equal to avoid

ambiguity of what is being estimated.

The random normal deviates were generated by the

Marsaglia rectangle-wedge method. The random uniform

numbers used in the'method were generated. by the linear

congruential method, incorporating the exchange sequence of

cLaren and Marsaglia (Algorithm M: Knuth, 1969) to break

the serial correlation between successive numbers.. The

desired variances and correlations were induced

algebraically.

Thirty-two contaminated situations resulting from the

combination of four parameters were examined:

12
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1. population correlation: rho = .0, .3, .6 and .9

2. sample size: n = 20 and 40

3. standard deviation of the contaminants: sigma = 2

and

4. level of contaminatic,n: beta = .10 and .25.

Eight noncontaminated situations were also examined for the

combination of sample size and population correlation.

These bivariate standard normal situations can be

represented as cases where beta equals zero.

For economy not all situations were uniquely generated.

Given sample size and ,population correlat,,,n, the same

bivariate normal data were used repeatedly across all

contaminating situations. This also increases the internal

consistency of the comparisons of the estimators across the

various contaminated situations. A similar scheme was used

by Devlin, et al.

In order to generalize the results of any Monte Carlo

study, the variability of the statistics should be small.

Prior to the study, it was decided that the maximam standard

error of the mean of the correlation estimators should be

.01. Since the variability is inversely related to the

number of replications, regression sampling (Cochran, 1963),

a variance reduction technique, was used in this study to

reduce the required number of replications given the desired

13
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precision. The Studentls t transformatiori of the maximum

likelihood estimator of the population correlation, given

the assumptions of zero mean and equal variances, (Kraemer,

1975). calculated only from the observations from the

non-contaminated bivariate distributions was used as the

auxiliary variable. Table 1 gives the number of

replications used for the various parameter settings.

Insert Table 1 about here

RESULTS

To summarize, the following correlation estimators were

calculated over forty parameter setting:

1. the Tukey correlation - r*(t),

2. the transformation of Spearman's rho - r*(S),

3.

4.

the biw .ight standardized sums and

r*(ESD),

the standardized sums and differences

differences

- r*(SSD)

-

-

5.

using 10% symmetrically trimmed

variances,

bivariate trimming r*(BVT)

means

using

and

10%

symmetrically trimmed means and variances for

standardizing X and Y and a 20% symmetric trimming

of the crossproducts,

14
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6. the averaged bisquare - r *(B') - with a least

squares start and constant of 9 for the bisquare

regression fit, and

7. the Pearson correlation coefficient - r(P).

Mean square error which takes ato account both the

variability and bias of an estimator was the principal means

of evaluating the robust estimators,

2 2

MSE = S(r*) + (r* - rho) 4.1

The MSE'S for the estimators are presented in Table 2 using

the two-way analysis by medians (Tukey, 1977). This

procedure decomposes the MSE into a grand effect, the

effects cf the estimators ((r*)) and the effects of the

contamination (ct). The values in the subtables are

residuals. This type of analysis is especially useful when

the residuals are small relative to the other effects since

we can focus directly on the effects. Any MSE can be

reconstructed by summing the three effects and the residual,

MSE = grand effect + r* + ct + residual. 4.2

Insert Table 2 about here

All values of MSE were multiplied by 10000 to make the

tables more readable. For each correlation and sample size

15
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there are two tables, one for each of the different

contaminating standard deviations. Within .each subtaLle the

grand effect is in the upper right, I:* effect in the left

column and contamination effect in the top row.

The contamination effect is smaller for a standard

deviation of two than for three and frt ten percent

contamination than for twentyfive percent. The residuals

for the subtables in Table 2 are not as small as we might

like. In some cases, the residuals are larger than the

effects indicating that an additive model is not appropriate

here and that some sort of interaction might be taking

place. No one estimator is best in all situations and the

differences between the estimator effects are small, except

frx an occasional situation where one estimator stands out

as best or worst, such as the large negative effects for a

correlation of .0.

Insert Table 3 about here

Table 3 contains the grand effects of MSE. MSE varies

with the level and extent of contamination as well as sample

size and population correlation. To better understand the

MSE for the various estimators, bias was examined. Table 4

contains the means, adjusted by the regression sampling

procedures and multiplied by 1000, for the Pearson as well

as the six robust estimators. Contamination and sample size

do not appear to affect bias and since the residuals are

16
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generally close to zero, there does not appear to be any

interaction. Since the maximum standard error of the mean

is .01 for all estimators, a difference of less than 20

between estimators could be considered negligible. From

this table, a bias of r*(S) to underestimate the correlation

for correlations of .9 and .6 clearly stands out. The only

other bias occurs for r*(BVT) for large sample size and

correlation of .9.

Insert Table 4 about here

Table 5 contains the grand effects of the adjusted

means. Generally bias is not a problem except for small

sample size and a very large correlation where there is a

bias to underestimate the value.

Insert Table 5 about here

In addition to MSB and bias, the efficiency of the

estimators relative to the Pearson is considered,

efficiency = MSE(r(P)) / MSE(r*). 4.3

A robust estimator should have smaller MSE than the Pearson

in all contaminated situations and perform almost as well as

the Pearson when no contamination is present. Table 6

contains the efficiency of the six robust estimators. When

contamination is present, we caa always do better than the

Pearson and when the data are from a bivariate normal
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distribution, the Pearson is best, as would be expected.

Insert Table 6 about here

5. DISCUSSION

The following discussion of the individual estimators

draws on the information in the preceding tables.

The estimator r*jt) performed reasonably well over all

situations. In more than half of the situations it has the

smallest or second smal2est MSE and never the largest. It

is better than the Pearson in all situations except for a

correlation of .9 and a contamf,nating standard deviation of

2, but in this case there is not much difference between the

MSE for the two estimators. It also performed well in the

non-contaminated situations.

The performance of ;:*(S) is related to the value of the

population correlation. It has the smallest MSE for

correlations of .0 and .3 and is almost twice as efficient

as the Pearson in these situations. Its performance for

correlation of .9 is worse than the Pearson. In spite of

this, it never has the largest MSE. The relatively poor

performance for the larger correlations is due to the bias

of underestimating as mentioned above. These results are

consistent with those of Vainer and Thissen, which indicated

that this is the best estimator for small values of

correlation but not large.

18
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The estimator r*(BSD) is never among the best

estimators and for many situations has the largest MSE. In

Table 6 we can see that it is often worse than the Pearson,

especially for large correlations.

Overall, r*(SSID) performed about as well or better than

the Pearson. It is neither the best nor the worst estimator

in any situation.

Inconsistent results occur for r*(BVT). It usually has

the largest MSE, especially for correlations of .9 when its

effect is approximately twice that of the grand effects for

the subtables in Table 2. For correlations of .9 and .6,

the MSE is larger than that of the Pearson. For

correlations of .3 and .0 and a contaminating standard

deviation of three, r*(BVT) has the second smallest MSE for

both sample sizes and is 50% more efficient than the

Pearson. For a standard deviation of two, it performs

reasonably well for the small samples but not for the large.

It does not perform well for the bivariate normal

distributions.

The averaged bisguare, *(Bi), is usually the best

estimator for correlations of .9 and .6 and is among the

better estimators for the smaller correlations. In terms of

efficiency, it is always better than the Pearson for the

contaminated situations and is closp to the Pearson in the

non-contaminated situations.

19



18

6. CONCLUSIONS

In this study, the performance of many of the

estimators is dependent on the value of the population

correlation, sample size and/or type of contamination. The

estimation of very large correlations appears to represent a

special situation. Two estimators that stand out as not

being situation specific and demonstrate robust properties

are the averaged bisquare, r* (B') and Tukey, r*(t),

correlations. The transformed Spearmans rho is an

attractive estimator because of the ease of calculation;

its performance however is dependent on the correlation.

For small correlations it is clearly the best of all the

estimators considered in this study but degenerates as the

correlation increases such that it is among the worst for

correlation of .9. Of the other three estimators, r*(SSD)

demonstrated robustness and, given its performance in other

studies, warrants further investigation. The r*(BSD) did

not demonstrate robustness in this study and r*(BVT)

demonstrated limited usefalness.

The results of this study are not completely comparable

to some of the previous research since only one type of

nonGaussian situation is considered - contaminated normal

distributions. Devlin et al. used four other types of

distributions in addition to the contaminated normals. Two

of the leading estimators from their study, r*(BVT), in a

different form, and r*(SSD) did not perform as well as some

20
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of the other robust estimators included in thi y. The

performance of r* (B') and r*(t) with respect t .er zypes

of nonGaussian distributions is not known.

REAL DATA EXAMPLES .

This was a Monte Carlo study in which the data were

generated to posseSs specific distributional properties and

known parameters. It is important to relate the usefulness

of this type of research to real data where the

distributions and parameters are unknown and the purpose of

analysis is estimation.

Insert Table 7 about here

Two data sets are presented in table 7. These are

student scores on midterm and final exams in intermediate

(example 1) and advanced (example 2) statistical analysis

classes. Figures 1 and 2 contain the scatter plots for

these data.

Insert Figure 1 about here

In figure 1, there are two observations in the lower

left corner. The effect of these points is that the Pearson

will tend to overestimate the relationship between the

variables. Table 8 contains the correlation estimates. All

six of the robust estimates are smaller than that of the

Pearson, minimizing the effect of the two "outliers". The

21



20

most extreme estimates are r*(BSD) and r*(BVT).

Invert Table 8 about here

In figure 2, suspicious or questionable observations

are on the minor axis and would cause the Pearson to

underestimate the correlation. The robust estimates are

larger than that of the Pearson except for r*(S) and

r*(BVT). These data might be considered to have moderately

high correlation (.7) and we saw above that r*(S) has a

tendency to underestimate in this situation. The values for

r* (B') and r*(t), .703 and .705 respectively, are very

close. The value for r*(SSD) is most extreme.

Insert Figure 2 about here

The above data sets are small but represent the ability

of the robust estimators to handle different types of

suspicious points. The different estimators give different

estimates indicating that they treat observations

differently. The application of robust estimation to real

data sets and problems has just begun and it needs to be

extended and continued along with Monte Carlo investigation.
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TABLE 1

Number of Replications

n = 20 n = 40

nct ct nct ct

rho

.9 100 100 100 100
.6 300 300 100 100
.3 500 600 200 300
.0 500 600 200 330

nct - no contamination
ct - contamination

26



TABLE 2

sigma 2

MSE for r*(

n = 20

3

) times 10000

2

r. 40

beta .10 .25 .10 .25 .10 .25 .10 .25

rho * * * *

.9 34 -4 4 52 -9 8 14 -1 1 22 -4 4 * *

r*(13') -4 0 1 -12 1 0 -2 1 0 -5 1 -1

r*(BSD) -1 0 0 7 -2 3 1. 0 0 1 -3 3

r*(S) 28 1 -1 35 3 -2 9 0 0 10 -1 0

r*(t) -2 0 1 -6 -1 1 0 1 -1 -3 4 -4

r*(BVT) 64 -3 4 95 -6 6 39 -1 1 48 -8 7

r *(SSD) 0 1 -2 13 3 -2 0 0 1 -1 0 0

.6 371 -10 10 442 -28 28 152 -10 10 192
..., 21 **

O(B°) -34 7 -7 -16 13 -14 -26 15 -16 -38 22 -21

r*(BSD) 7 -8 9 64 -61 60 -2 0 1 32 -22 22

r*(S) -7 -1 1 -40 4 -3 2 1 -1 -4 0 0

r*(t) -35 2 -2 -8 10 -10 -24 12 -13 -29 25 -2S

r*(BV1) 44 1 -1 23 -3 3 38 -2 2 39 -17 18

r*(SSD) 7 -3 2 8 -11 11 2 0 0 4 0 0

.3 543 -14 14 659 -47 46 250 -9 9 302 -27 28 **

r*(8') -3 -11 12 11 -16 16 1 -8 8 28 -13 14

r*(BSP) 27 -1 2 39 -9 9 -1 -1 2 13 -4 5

r*(S) -35 4 -3 -106 24 -23 -23 2 -1 -59 13 -12

r*(t) -18 -5 5 13 9 -9 -9 -5 5 12 1 0

r*(BVT) 3 7 -6 -58 23 -23 23 9 -10 -21 24 -24

r*(SSD) 9 0 -1 -11 -11 12 6 3 -3 -11 0 0

.0 644 -5 5 789 -29 30 304 -17 16 372 -36 36 * *

r*(3') 9 0 1 29 -13 13 -10 -2 3 20 -8 7

r*(BSD) 55 -4 4 31 -23 22 10 -8 8 23 -18 18

r*(S) -38 2 -2 -136 13 -14 -22 1 -1 -68 8 -8

r*(t) -9 1 0 8 24 -25 -14 -1 1 2 11 -10

r*(BVT) -13 1 0 -126 16 -16 32 6 -6 -36 16 -15

r*(SSE) 27 -5 5 -8 -28 . 28 16 3 -3 -3 -7 7

* estimator effect ** contamination effect

25
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TABLE 3

Grand Effects of MSE (times 10000)

n = 20 n = 40

sigma 2 3 2 3

rho

.9 34 52 14 22

.6 371 442 152 192

.3 543 659 250 302

.0 644 789 304 372
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sigma

TABLE

Adjusted deans (times

n = 20

2 3

4

1000)

n = 40

2 3

beta

rho

.10 .25 .10 .25 .10 .25 .10 .25

.9 889 4 -1 0 -7 893 2 3 -2 -3 **

:

. r (P) 1 1 -1 3 0 0 -2 1 -3 6

r* (B0) 0 0- 0 0 3 0 -1 -1 2 2

r* (BSD) 3 1 0 0 -4 -3 0 -1 3 -5
r*(S) -25 1 2 0 0 -16 0 1 0 0

r*(t) 2 -1 -1 2 1' 0 -2 0 0 6

r* (BVT) 5 -1 7 1 -11 39 8 2 -1 -26
r* (SSD) -3 -3 0 0 4 -3 0 -1 3 0

. 6 578 5 0 0 -10 598 1 2 -2 -1 **

r (P) 4 -1 1 0 4 3 -3 -2 1 3

r *(B') 10 -1 0 -1 2 3 -1 0 -2 5

r*(BSD) -3 3 0 0 -6 -10 7 0 0 -10
r*(S) -16 0 1 -2 0 -18 4 -3 3 -14
r*(t) 7 -3 0 0 5 0 0 -3 4 0

r* (BVT) 0 4 3 -4 -6 5 9 1. -1 -17
r* (SSD) -4 1 -1 2 -3 -12 0 0 -2 1

.3 280 2 0 -1 295 1 2 0 -1 **

r (P) -6 -1 3 -9 0 3 0 -1 -2 2

r *(B') 1 0 1 -2 2 2 -1 0 -4 2

r* (BSD) 5 -1 0 3 0 -4 1 0 0 -5

r*(S) -7 0 0 0 -2 -10 5 -1 1 -4

r* (t) 0 -1 1 -5 0 2 0 0 -2 2

r* (BIT) -3 0 -1 0 -6 0 4 0 1 -9

r* (SSD) 1 0
___--

-1 1 -1 -2 0 -1 4 0

.0 -3 0 -1 1 0 2 4 -4 3 -6 **

r (P) 3 -1 0 -1 1 0 2 -3 9 -3
r *(B') 3 1 -2 5 -1 0 0 0 -1 -1
r* (BSD) 0 5 1 -1 -3 -2 0 0 -1 1

r*(S) -5 -1 -1 0 0 -1 0 -1 1 0

r*(t) -1 0 1 0 0 -1 1 -2 5 -2

r* (BVT) -5 0 1 -1 2 3 -2 1 0 1

r* (SSD) 0 2 -2 2 -4 1 -1 4 -2 0

* estimator effect **

29

contamination effect
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TABLE 5

Grand Effects of Adjusted Means

n = 20 n = 40

rho

.9 .889 .893

.6 .578 .598

.3 .280 .295

.0 -.003 .002
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sigma

TABLE 6

MSE Efficiency Relative to the Pearson

n = 20 n =

2 3 1 2

40

3 1

beta .10 .25 .10 .25 0 .10 .25 .10 .25 0

rho = .9

r *(B') 1.00 1.17 1.26 1.52 .95 1.22 .98 1.98 1.08 1.00
r*(BSD) .90 1.12 .85 .97 .88 1.07 .84 1.69 .73 1.00
r*(S) .44 .64 .50 .73 .55 .68 .56 1.03 .60 .76
r*(t) .93 1.11 1.12 1.2'4 .91 1.09 .98 1.47 1.12 1.00
r*(BVT) .29 .39 .31 .42 .27 .29 .25 .48 .27 .23
r*(SSD) .86 1.16 1.22 1.53 .75 1.09 .88 1.65 .86 .81

rho = .6

r* (B ") 1.07 1.10 1.30 1,28 .96 1.12 1.10 1.58 1.24 .97
r*(BSD) .99 .95 1.28 .95 .96 1.06 .82 1.36 .71 .87
r*(S) 1.01 1.00 1.41 1.32 .81 1.02 .81 1.46 .90 .75
r*(t) 1.09 1.09 1.29 1.25 .99 1.14 1.06 1.47 1.20 .96
r*(BVT) .88 .89 1.23 1.13 .70 .83 .65 1.26 .70 .68
r*(SSD) .98 .96 1.30 1.15 .83 1.03 .80 1.40 .88 .81

rho = .3

r*(BI) 1.09 1.08 1.42 1.25 .96 1.14 1.13 1.55 1.27 .97
r(BSD). 1.02 1.05 1.34 1.21 .88 1.12 1.17 1.58 1.36 .92
r*(S) 1.13 1.18 1.63 1.59 .86 1.2;7 1.29 1.96 1.82 .93
r*(t) 1,=-11 1.13 1.36 1.2 "f .96 1.18 1.19 1.56 1.38 .98
r*(BVT) 1.04 1.11 1.4q 1.4b .77 .98 1.12 1.62 1.65 .80
r*(SSD) 1.05 1.08 1.47 1.30 .77 1.07. 1.16 1.71 1.48 .82

rho = .0

r *(B') 1.07 1.07 1.33 1.14 .93 1.16 1.10 1.56 1.18 1.00
r*(BSD) 1.00 .99 1.34 1.13 .89 1.10 1.02 1.60 1.15 .99
r*(S) 1.14 1.15 1.62 1.47 .93 1.20 1.16 1.97 1.55 .97
r* (t) 1.09 1.10 1.30 1.23 .98 1.17 1.12 1.56 1.29 1.03
r*(BVT) 1.10 1.10 1.59 1.46 .88 .98 .99 1.72 1.44 .81
r*(SSD) 1.04 1.03 1.43 1.17 .83 1.04 1.04 1.67 1.25 .90

31
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TABLE 7

Real Data Examples

DATA 1 DATA 2

obs. X Y X

1 51 44 42 40
2 71 49 38 38
3 78 57 36 42
4 34 11 40 42
5 80 55 35 6
6 73 52 45 39
7 56 58 13 26
8 64 54 17 8
9 73 50 40 42

10 66 53 37 45
11 52 51 14 5
12 71 51 38 34
13 54 41 31 34
14 57 59 25 5
15 514 44 32 38
16 79 47 24
17 37 44 38 22
18 44 58
19 61 43
20 66 44
21 53 48
22 58 55
23 54 50
24 51 42
25 80 59
26 33 13
27 80 58
28 53 43
29 67 52
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TABLE 8

Correlation Estimates for Real Data

r (P)

r* (B1)
r* (BSD)
r*(S)
r* (t)

r* (BYT)
r* (SSD) .

DATA 1 DATA 2

.638 .683

.468 .703

.396 .710

.543 .667
-.585 .705
.352 .664
.621 .812
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PLOT OF Y*X

FIGURE 1

EXAMPLE., 1

SYMBOL USED IS *

Y
65

60 I+

* *
55 I+

** *

50 I+

45 + * ** * *

40 I+

35

30 1

25 +

20 1

15 I+

10
* .

+---+---+---+--- +--- +--- +--- +--- +--- +-- - + - - -+
33 37 41 45 49 53 57 61 65 69 73 77

X
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PLOT OF Y*X

FIGURE 2

EXAMPLE 2

SYMBOL USED IS *

Y I
45 +
44 +
43 +
42 + * *
41 +
40 +
39 +
38 +
37 +
36 +
35 +
34 +
33 +
32 +
31 +
30 +
29 +
28 +
27 +
26 +
25 +
24 +
23 +
22 +
21 +
20 +
19 +
18 +
17 +
16 +
15 +
14 +
13 +
12 +
11 +
10 +
9 +
8 +
7 +
6 +
5 +
4 +
3 +
2 +
1 +
0 + +- -+ + - +- - - +- + - - + - - -+

13 17 21 25 29 33 37 41 45

NOTE: 1 OBS HIDDEN
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